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Abstract. An exactly solvable ring-shaped potential in quantum chemistry given 
by 

V ~--- ~]o2~o r 2 sin 2 0 J  

was introduced by Hartmann in 1972 to describe ring-shaped molecules like 
benzene. In this article, the supersymmetric features of the Hartmann potential are 
discussed. We first review the results of a previous paper in which we rederived the 
eigenvalues and radial eigenfunctions of the Hartmann potential using a formula- 
tion of one-dimensional supersymmetric quantum mechanics (SUSYQM) on the 
half-line [0, oo). A reformulation of SUSYQM in the full line ( -  0% oo) is sub- 
sequently developed. It is found that the second formulation makes a connection 
between states having the same quantum number L but different values of r/a 2 and 
quantum number N. This is in contrast to the first formulation, which relates states 
with identical values of the quantum number N and/10 "2 but different values of the 
quantum number L. 

Key words: Supersymmetry - Hartmann potential - Supersymmetric quantum 
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1 Introduction 

The unification of the four fundamental forces of nature (namely, the gravitational, 
electromagnetic, weak and strong interactions) has been a major goal in theoretical 
particle physics ever since Einstein started out with this idea during the early 1900s. 
Some degree of success has been achieved in partially unifying the electromagnetic 
and weak interactions. Viable theories which unify the electromagnetic, weak and 
strong interactions have also been put forth. A major stumbling block is putting 
gravity into the picture. Efforts to circumvent this problem led to the discovery of 
supersymmetry (SUSY) in 1971 by Gel'fand and Likhtman I-1]. At present, many 
physicists believe that supersymmetry is a necessary ingredient in the theory which 
will eventually unify the four fundamental interactions. 
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Symmetry plays a crucial role in contemporary theoretical particle physics. 
The very successful Standard Model of particle physics is based on a "gauge" 
symmetry which relates fermions (half-integer spin particles) to fermions and 
also bosons (integer spin particles) to bosons. Supersymmetry is a symmetry 
which relates fermions to bosons and vice versa. In a more general sense, super- 
symmetry relates the "fermionic" and "bosonic" degrees of freedom of a quan- 
tum system. 

One of the most important predictions of SUSY models is the existence of 
supersymmetric partners for each of the presently observed particles. For instance, 
an electron (spin ½) has a SUSY partner called a "selectron" (spin 1) while a photon 
(spin 1) has a SUSY partner called a "photino" (spin ½). An important property of 
SUSY partners is that they have the same mass as their corresponding ordinary 
particles. 

The mass degeneracy of SUSY partners and ordinary particles is not observed 
at ordinary energies. Hence, supersymmetry is said to be "broken" at some energy 
scale. In an attempt to study SUSY breaking in quantum field theory, Witten [2] 
developed the simplest case of supersymmetric quantum mechanics (SUSYQM) in 
1981. Consequently, early studies in SUSYQM were focused on the study of SUSY 
breaking. Soon, however, it was realized that SUSYQM can have interesting 
applications in atomic physics, statistical physics, nuclear physics, etc. [3] and most 
recently in quantum chemistry [4]. The present paper is meant to extend the 
application of SUSYQM techniques on the Hartmann potential which we started 
in Ref. [4]. 

In 1972, Hartmann [5] proposed a potential of the form 2) 
V = ~/o'2~o o qa__£ (1) 

r 2 sin 2 0 ' 

with 

h 2 1 ire 4 
and e o -  (2) ao = Pe 2 2 h 2 

in which t/and cr are positive real parameters ranging from 1 to 10 in theoretical 
chemistry applications [6], # is the mass of the particle and r and 0 are in spherical 
coordinates. The above potential has been very useful in describing ring-shaped 
molecules like benzene. In a previous paper [4], SUSYQM techniques were used to 
rederive the eigenvalues and radial eigenfunctions of the Hartmann potential. In 
this article, we further explore its supersymmetric quantum mechanical features by 
a second formulation of SUSYQM. This analysis is inspired by the analysis made 
for the hydrogen atom using supersymmetry in Ref. [7]. It is the author's hope to 
further contribute to the use of SUSYQM techniques in solving important prob- 
lems in theoretical chemistry. 

Section 2 gives a brief introduction to SUSYQM techniques. We explore the 
supersymmetric features of the Hartmann potential in Sect. 3 by looking at two 
different formulations. To facilitate the comparison of these two formulations, we 
briefly review the first formulation (see Ref. [4] for a very detailed discussion) in 
Sect. 3.1. Section 3.2 gives a detailed discussion of the second formulation and 
subsequently compares it to the first. 

Some conclusions are given in Sect. 4. 



Supersymmetry and the Hartmann potential 55 

2 Supersymmetry in quantum mechanics 

As alluded to in Sect. 1, supersymmetry was first introduced in particle physics 
[8, 9]. The language of particle physics is quantum field theory (which is a theory 
describing systems with an infinite number of quantum mechanical variables). To 
describe a system, a Lagrangian density £~°(qh, 0urpi) where [0, = ( (1 /c)O/at ,  V)], is 
specified. ~0, are quantum fields describing the dynamics of the particles in a system. 
Supersymmetry is introduced by imposing the invariance of ~e with respect to 
supersymmetric transformations given by a SUSY algebra. Invariance of ~ dic- 
tates a relationship between fields Z and ~ in which the spins of)~ and ~/differ by ½h. 
In the present paper, we will use the word "supersymmetry" in a more general 
sense. Supersymmetric systems are systems which can be described by the SUSY 
algebra. 

A quantum mechanical system is considered supersymmetric if it can be 
characterized by charge operators Qi,  i = 1, 2, . . . ,  N .  The SUSY algebra (denoted 
by sqm(N)) is then given by 

{Qi ,  Q j )  = 6i~Hss, [Qi,  H~] = 0, (3) 

where { } and [ ] are anticommutator and commutator, respectively, and H~ is 
the supersymmetric Hamiltonian describing the system. For most applications of 
SUSYQM, like this article, only two charge operators Q1 and Q2 will be considered 
(i.e. sqm(2) algebra). 

It is more useful to construct non-Hermitian charge operators from Q1 and 
Q2 given by 

1 Q, 
Q = ~ ( Q 1  + iQz) and = ~22 (QI - iQ2). (4) 

The SUSY algebra of Eq. (3) becomes 

{Q,Q*}=Hss, Q2=0,  (Qt)2=0 (5) 

and 

[Q, Hss] = 0 and [Qt, Hss] = 0. (6) 

A simple way of realizing Eqs. (5) and (6) is by letting 

001 ' ° 0 I (7) 

in which 

(A-)* = A +. (8) 

Equations (5) and (7) give 

0 I [ 10 l 
A - A  + - 0 H 2  " (9) 

HI and H2 are said to be supersymmetric partner Hamiltonians. H1 is often called 
the "Bose" sector while Ha is referred to as the "Fermi" sector. Let us now discuss 
how we can relate the preceding formalism to quantum mechanics. 
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Given a Hamiltonian H1 in quantum mechanics, 

1 d 2 
H1 = - ~dx-- 2 + Vl(x) 

satisfying the Schr6dinger equation 

(lO) 

where 

1 2 V2(x ) = ~ [ W  1 + d W l l  
dx J" (16) 

One notices that H2 in Eq. (15) is altogether a new Hamiltonian with a new 
potential V2(x). We can then construct another set of operators similar to Eq. (12), 

) l (d ) 
A2 = -d-£x + W2 and Af -= 7 - ~xx + W2 ' (17) 

where this time the superpotential W2 satisfies an equation similar to Eq. (13), 

1 2 V2(x) ~[W2 dW2] 
= - dx d" (18) 

1 d 2 1 
/-/1~/~1) = 2 dx  2 "[- VI(X) ~/~1) = J~1)1//~1), (11) 

it is well known that it can be factorized I-3] by defining the operators 

) , (d  ) 
A 1 - 7  ~xx+W1 and Ai ~ - ~  -~xx +W1 , (12) 

where W1 (called the "superpotential') satisfies the Ricatti equation 

[ d W l ]  1 W2 (13) 
V 1 (x) = -~ dx J" 

In Eq. (10) above, the potential Vl(X) is chosen such that the ground-state energy 
E ° is zero. 

From Eq. (9) we get 

H~ = A~ A [  and H2 = A [  A~,  (14) 

and thus we can form Hss as in Eq. (9). The preceding discussion essentially tells us 
that given a potential Vl(x), any Hamiltonian H1 in one-dimensional quantum 
mechanics has a SUSY partner H2 and thus can be an element of an Hss, as long as 
one can solve for the superpotential W1 in Eq. (13). 

Expanding H 2 in Eq. (14) using Eq. (12), we get 

1 d 2 
H2 = A ; A ~  - 2 dx 2 + V2(x), (15) 
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Solving Eq. (18) for Wz enables us to construct the operators in Eq. (17) from 
which we can construct a new SUSY-partner Hamiltonian 

1 d 2 
H3 = A2A]  - 2 dx 2 + V3(x) (19) 

with 

1 [  : dWz-] (20) 
V3(X) = ' 2  W2 + dx A" 

It is apparent that we can generate a "hierarchy" of SUSY-partner Hamiltonians 
H1, H2, H3, ... with the above procedure. 

The construction of the operators Ai ~ from H1 is reminiscent of the raising and 
lowering operators of the simple harmonic oscillator in elementary quantum 
mechanics. These operators give a convenient way of solving the energy eigen- 
values and eigenfunctions. Since A~ determines H1 and H2, we expect the eigen- 
values and eigenfunctions of H1 and Hz to be related. Let us illustrate how this 
happens. 

Consider an eigenfunction of H1, namely, [//~1) such that 

" " " ( 2 1 )  

Multiplying Eq. (21) by A1, 

E~I)(A-( ~1)) = A (  A~ (A[ 0~1)) = H2(A[ ~1)). (22) 

Equation (22) means that given an eigenfunction ~1) of H i ,  one  can form an 
eigenfunction A1 ~a) of H2 with the same eigenvalue E~I). Similarly, one can start 
with H2 and show that 

n + n E(2)(A1 ~h~':)) = HI(A~ ~9(2)). (23) 

Note that since we have chosen the eigenvalue of the ground state of H1 to be 
zero, Eqs. (14) and (11) imply that 

0 = (A + Ai- )~/~1) (24) 

which leads to 

A[ 0~1) = 0. (25) 

Equations (22), (23) and (25) imply that H1 and H 2 have identical eigenvalues 
except for the ground state of HI (in which A[  ~k~l) = 0, implying non-normaliza- 
bility). In addition, these equations imply that we can get eigenfunctions of H 2 (H 1 ) 
by applying A? (A I)  to eigenfunctions of Hi(H2). This analysis can clearly be 
extended to the hierarchy of Hamiltonians H1, H2, H3, ... • We illustrate these 
ideas in Fig. 1. 

An important consequence of SUSYQM is the intimate relationship of the 
eigenfunctions and eigenvalues of the SUSY-partner Hamiltonians. This can be 
very useful in solving the Schr6dinger equation of a more complicated potential if 
the solution of its corresponding SUSY partner is known. 
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Fig. 1. The hierarchy of Hamiltonians and the action of the operators A + on the degenerate eigen- 
states. 

3 SUSYQM o f  the  H a r t m a n n  po ten t ia l  

The Schr6dinger equation of a particle with mass # subjected to the Hartmann 
potential is given in spherical coordinates by 

-- 2--p V2~k + r 2 sin 2 0 0 = E0. (26) 

The discussion of SUSYQM in the preceding section involves only one dimen- 
sion. In order to be able to apply SUSYQM in one dimension to the three- 
dimensional Hartmann potential, we do a separation of variables to get three 
one-dimensional differential equations [5]. Assuming a solution 

tp = R(r) O(0) ~(q~), (27) 

we get from Eqs. (26) and (27) 

1 d 2 ~  
- -  - m 2, (28) 
dq~ 2 

1 d s in0- -~  - si--~0 L ( L + I )  O = 0 ,  (29) 
sin 0 dO 

16( R) R 
r 2 dr r2 ~ r  - L ( L  + 1) ~7 + - - ~  E + r R = 0, (30) 

where 

M 2 = m 2 -k ~/20"2. (31) 

For a one-dimensional differential equation to be solvable by SUSYQM [10], 
it must be of the form of Eq. (11) (no first derivative term) and must yield an infinite 
tower of states as in Fig. 1. As shown in Ref. [4], only the radial equation of Eq. (30) 
gives an interesting SUSY. Equations (28) and (29) can be solved by conventional 
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methods [5]. Their solutions are given by 

1 
~ ( ~ )  = ~ e ira4, m = O, + 1, + 2,  . . . ,  (32)  

O(0),-~/UL(cos0), L = v ' + i M I ,  v ' = 0 , 1 , 2 , . . . ,  (33) 

respectively. From hereon, we focus on Eq. (30). 
Equation (30) can be shown to have the form of Eq. (11) by making the change 

of variables [4] 

u 
R = - (34) 

r 

Putting Eq. (34) into Eq. (30), yields 

- -  1 /~E 
1 d 2 L(L+I )  7 u =  u, (35)  

HLU = 2 dr 2 + 2r 2 r 

where 

llrla2 e 2 

7 -~ h2 (36) 

Let us next review the results of Ref. [4]. 

3.1 Calculation of the eigenvalues and radial eigenfunctions 

One useful thing to note about Eqs. (28)-(30) is that they resemble closely the 
separated equations of the hydrogen atom [11]. The eigenvalues and radial 
eigenfunctions of the hydrogen atom had been solved by SUSYQM methods [12]. 
Thus, we can just utilize some of the useful results from the hydrogen atom 
problem. In this subsection, we will simply quote the major results of our previous 
paper [4]. The reader can refer to Ref. [4] for more details. 

In order to solve the eigenvalues and radial eigenfunctions of the Hartmann 
potential by SUSYQM, we construct a Hamiltonian similar to Eq. (35): 

1 d 2 L(L+I )  ~ +  (37) 
JfL - 2 dr 2 + 2r - - - -7 - - -  r 2 ~ " 

Note that the Hamiltonians in Eqs. (37) and (35) differ only by a constant. Hence, 
any eigenfunction of ~L  will also be an eigenfunction of IlL. The eigenvalues of 
HL can be obtained by simply letting HL act on its eigenfunctions. 

The resulting Ricatti equation of Eq. (37) is given by (from Eqs. (11), (37) and 
(13)) 

2r 2 r + ~  ~ = W~ ~-r J (38) 
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which yields a superpotential 

L + I  7 
W L  = - -  -~ (39) 

r L + I "  

From Eq. (39) we construct the operators (using Eq. (12)) 

Af 1 T- ~ r (40) 

Using Eqs. (40) and (14) we construct a SUSY-partner Hamiltonian 

54fL+1 A f A  + 1 d 2 ( L + I ) ( L + 2 )  7 + 1 (  7 )2 
= L = 2dr2-t  2r 2 - - r  2 \ L - - - ~ ]  " (41) 

With L = IMt, IMI + 1, IMP ÷ 2, ... as in Eq. (33), a hierarchy of Hamiltonians 
similar to Fig. 1 will be formed but with H 1 , H 2 ,  H3,  ... replaced by ~et°lMi, 
~IMI+I, ";/g'lMl+2, " " .  We then expect a similar set of states for HIMI, 
HIMI + 1, HIMI +z, ".. • This is illustrated in Fig. 2. The states at the lowest rung of 
the infinite tower of states of each of the Hamilotonians are shown and labeled by 
the corresponding L quantum number. 

From Eqs. (25) and (40), we get 

- -  + ~ L )  = 0 (42) 
dr r 

with the solution 

~ )  = XLrr.+ 1 e x p ( -  XLr), (43) 

where 

7 (44) 
X L - - L +  1 

and XL is a normalization constant. 
Since L is arbitrary, Eq. (43) is the expression for the radial eigenfunctions at the 

bottom rung of the ladder of states of the hierarchy of Hamiltonians in Fig. 2. 
Hence, we can write 

UL = ~UL r L+ 1 e x p ( -  tCL r). (45) 

Letting HL of Eq. (35) act on Eq. (45), we get 

HL uL = -- ~ dr-- 5 + \ ~ - 2  uL = ~ uL. (46) 

Solving for the energy yields 

A 
EL A = r/Za4le o1. (47) 

(L + 1) 2, 
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ul~l+z 

Ul~l+J 

ulMi 

HIMI HIMI+I HIMI+2 . . . . . .  

Fig. 2. The hierarchy of Hamiltonians of the Hartmann potential and their ground states. The HL here 
are the actual radial Hamiltonian for a particular L value. 

We illustrate these energy levels in Fig. 3. By carefully examining in Fig. 3, the 
labels of the states and their corresponding energies as given by Eq. (47), it can be 
shown [4] that the energy is actually labeled by the quantum number N and is 
given by the following expression: 

Z n~ EN= " A=r/zcr41~o I, N = L + I + n ' ,  = 0 , 1 , 2 ,  (48) 
N 2 , ...  

with N >/]MI + 1 (from Eqs. (48) and (33)). 
From Fig. 3, it is apparent that the states must be labeled by UlMI+I,IMI; 

UlMI+2,1MI; UlMI+3,1MI;... for a given L = IMI value for instance. These are shown 
in Fig. 4. 

We can obtain the rest of the eigenfunctions by the action of A[  on the UL'S of 
Eq. (45) for different values of L. Figure 4 illustrates this too. 

With the above procedure, one can obtain the radial eigenfunctions RNL (since 
we can get the u(r)'s and then use Eq. (34)) found in Ref. [6]. We have shown that 
SUSYQM can be used to obtain the energy and radial eigenfunctions of the 
Hartmann potential. 

It is important to note that comparing Eqs.(37) and (41) (discounting 
the common constant I(7/(L + 1)) 2 which just rescales the ground state such 
that its energy eigenvalue is zero) and with Fig. 4, we realize that states with 
quantum numbers (N, L) has for its SUSY partner, states with quantum numbers 
(N, L + 1). 

3.2 Relating eigenstates with different values of ~](7 2 and quantum number N 

One thing to note about  the analysis of Sect. 3.1 is that the one-dimensional 
SUSYQM problem was formulated in the half-line [0, oo) (since 0 ~< r < oe). Let us 
now see the consequences of formulating the SUSYQM problem in the full line 
( -  oo, oo) [7]. 

As a first step, let us rewrite Eq. (35) by a change of variables given by 

(rtcr2)/~e 2 
y -- 7r = h2 r (49) 
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- - A  
(IMI + 3) 2 

- A  
(IMI + 2) 2 

- -  h UlM I 

UlMl+2 
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({MI + 1) 2 

HIMI Hlul+, Hlul+g 

Fig. 3. Figure 2 with the energy levels labeled. 
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HIMI HIMI+ 1 HIMI +z . . . . . .  

Fig. 4. The energy eigenstates of the Hartmann potential. The action of the A~ operators are explicitly 
shown to indicate how the other states are obtained from the states at the lowest rung of the hierarchy of 
Hamiltonians. 

with ~ given by Eq. (36). Using Eq. (49) and the equation for the energy given by 
Eq. (48), we can rewrite Eq. (46) as 

[ l d 2  L ( L + I )  1 ]  1 
2 dy ----~ + - - 2 y  2 Y UNL -- 2N 2 uNL. (50) 

We now make a second change of variables from y to x such that 

y = e x, UNL = eX/2~ (51) 

to turn Eq. (50) into a differential equation in the full line ( -  ~ ,  oo) given by 

[ 1 d 2  e2X 1 -~dx-- ~ + ~ - e  x @=-½(L+½)2~b. (52) 

It is interesting to note that Eq. (52) describes a Morse potential e 2 X / 2 N  2 - e x 

with eigenvalues --½(L + ½)2. We next find the SUSY-partner Hamiltonian of 
Eq. (52). 
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In order to be able to use the results of Sect. 2, we have to chose V~(x )  of 
Eq. (52) such that its ground-state eigenvalue is zero. Given N, the L values are 
(from Eq. (48) and as can be deduced from Fig. 4) N - 1, N - 2, N - 3, ..., [M[. 
Hence, the ground-state eigenvalue of Eq. (52) is - ½(N - 1 + 1/2) 2 = - ½(N - 1/2) z. 
We rewrite Eq. (52) as 

I 1 d 2 
HI~  = 2 dx 2 e2X J - - - - - + ~ - - e  ~+½(N-½)2 0=[-½(L+½)2+½(N-½)2] 0 

(53) 

with 

e 2x 
V~(x)  = ~ - ~  --  e x + ½(N --  ½)2 (54) 

chosen such that the ground-state eigenvalue is zero. We are now ready to get the 
SUSY-partner Hamiltonian of Eq. (53). From Eqs. (54) and (13), we get the Ricatti 
equation 

o2x I 1 - - - e  x+~(u-½)2  1 w~ aWl (55) 
2 N  2 = 2 d x  

whose solution is 

e x 1 
Wl = ~ + ~ - -  N. (56) 

From Eqs (56) and (12), we construct 

eXl )  l (deXl  ) 
A ~ - = ~  ~ x x + ~ + ~ - - N  and A + = ~  - ~ x x + ~ + ~ - N  . 

(57) 

The SUSY-partner Hamiltonian of H1 in Eq. (53) is given by Eqs (57) and (15) 
yielding 

( ' )x  H2=A;A?=-~dx----~+~N-~- 1 - ~  e + ( U - -  . (58) 

From the discussion in Sect. 2, we know that H 2 has the same eigenvalues as 
H1 except for the ground state where L = N - 1 and that the eigenstates ~ of 
H 2 a r e  related to that of the eigenstates of H1 by t~ ~ Ai-~. We then write the 
eigenvalue equation for Eq. (58) as 

E 1 ~ : ~ =  ~ + ~ - ~  1 -  e '+½(N-½)  ~ 

= I -- ~(L + ½)2 + ~(N--  ½)zl~. (59) 
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Summarizing, we have the SUSY-partner eigenvalue equations given by 
Eqs. (53) and (59) (with the rescaling constant term ½(N - 1)2 cancelled out) 

I 1 d 2 e 2x ] 
- dx---- + - e x = - ½ ( L  + ½) g, 

E ld2 ( 1)x 1 2 d x  2 + ~ -  1 - ~  e ¢ = - - ½ ( L + ½ ) z f f .  

Transforming back to the variable r and the eigenstate UUL using Eqs. (49 
(51), we get from Eq. (60) 

where 

I 1 d 2 6 pe2 1 L(L + 1)-] 62 /~2e4 
2 dr 2 - ~  r + 2r----T-- A ulv/. = N2 2h 4 UNL, 

(60) 

and 

t~ -~ ~0 "2, 

N' = N - 1. (62) 

From Eqs. (61) and (62), it becomes apparent that if we formulate the SUSYQM 
problem in the full line by the change of variables given by Eq. (51), states with the 
quantum numbers (N, L) in a potential with parameter t/G z is the SUSY partner of 
states with quantum numbers ( N -  1, L) but in a potential with parameter 
(1 - 1IN)rio ~. This relationship is in sharp contrast to that of Sect. 3.1 in which 
states with quantum numbers (N, L) with a potential having parameter t/or 2 has as 
their SUSY partners, states with quantum numbers (N, L + 1) with the potential 
having the same parameter rio -2. By SUSYQM, we have related states with different 
t/a 2 and N as SUSY partners in the Hartmann potential. 

An illustration of the observations put forth in the preceding paragraph is 
illustrated in Fig. 5 for N = [M[ + 3 in which L = [M[ + 2, ]M[ + 1, ]M[. The 
SUSY-partner states will have N'  = [M[ + 2 with L = [M[ + 1, [M[. If t/a z is the 
value for the first set of eigenstates, then its SUSY partners will have a value of 
(1 - 1/N)t/o -2 = (([ M J + 2)/(IM[ + 3)) t/o 2. Note that the actual SUSY eigenvalues 
are given by - ½(L + ½)2 as in Eq. (60). In addition, note carefully that in Eq. (61), 
the energy eigenvalues of the SUSY-partner eigenvalue equations are identical 
since from Eq. (62) 

6' (1 - l/N)6 ( N -  1)6IN 6 (63) 
N'  N - 1  N - 1  N 

Hence, in Fig. 5, the eigenstates have the same energy eigenvalue but different 
SUSY eigenvalues. We have here a case in which the SUSY partnership does not 
involve the actual energy eigenvalues. 

I 1 d 2 ~, fie 2 1 L(L  + 1)1 ~,2 i12e4 
2 dr 2 " ~ r  -} 2r 2 _j fis'L = N, 2 2h 4 gs,r., (61) 
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{IMI + 2'x 
SUSY eigenvalue rla z ~,[M-'M-~ )rla 

~ 

- ½ [ I M I  + ½]2 "~ ........ ",~, ...... 

- ~[-IMI + ~ ] z  ", . . . . . . . . . .  " . . . . . . . . . . .  

- ½FIMI + ~ ] 2  ",  . . . . . . . . . .  
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Fig. 5. An illustration of SUSY-partner eigenstates identified by (N, L, rio "2 ) and (N - 1, L, (1 - 1 /N) / /o  "2) 
given N = [MI + 3 for the SUSYQM formulation of the Hartmann potential in the full line ( -  oo, oo). 
Of course, one can again relate the different eigenstates with the same SUSY eigenvalues by A~ of 
Eq. (57). 

Another thing to note from Fig. 5 is that indeed, the spectrum of states of the 
Fermi sector has all the corresponding states of the Bosonic sector except for its 
ground state, as expected. 

4 C o n c l u s i o n  

In the preceding discussions, we have demonstrated how SUSYQM techniques 
can be used in the radial equation of the Hartmann potential in theoretical 
chemistry. By formulating SUSYQM in the half line [0, oo), we are able to 
establish a connection between the states with quantum numbers (N, L) and 
(N, L + 1) and the same parameter values t/a 2. This enabled us to derive the 
energy eigenvalues and radial eigenfunctions. On the other hand, formulating 
SUSYQM in the full line ( -  0% ~) ,  established an interesting SUSY connection 
between states with quantum numbers (N, L) and the parameter value r/a 2 with 
that of states with quantum numbers ( N -  1, L) and the parameter value 
(1  - 1/N)tla 2. 

The first formulation basically tells us that SUSYQM techniques can be used as 
an alternative method of solving the Schr6dinger equation. The second formula- 
tion reveals the possibility of unraveling new and unexpected relationships between 
eigenstates with different parameters and quantum numbers. 

A very important  result in SUSYQM is the close relationship of the eigenvalues 
and the eigenfunctions of the SUSY-partner Hamiltonians, Knowing the eigen- 
values and eigenfunctions of one of the Hamiltonians, can yield the eigenvalues and 
eigenfunctions of its SUSY-partner Hamiltonian. This can be useful in solving 
a complicated Hamiltonian if the solution of its SUSY partner is known. 

Using SUSYQM simplifies the problem of solving the second-order Schr6din- 
ger differential equation to that of solving a first-order differential equation given 
by A - ~  ° = 0. This yields the eigenfunctions at the lowest rung of the tower of 
states. The rest of the eigenfunctions are obtained by letting AL act on the 
eigenfunctions obtained from A - ~  ° = 0. 

As mentioned in Sect. 3.1, the separated differential equations of the Schr6din- 
get equation of the Har tmann potential closely resembles that of the hydrogen 
atom. There had been work on the SUSY features of the hydrogen atom 
[-10, 13, 14]. These works can possibly give further insights to the role of SUSYQM 
in the Har tmann potential due to the resemblance of the differential equations of 
the Hartmann potential to that of the hydrogen atom. 
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With  the above comments ,  the au thor  hopes to st imulate further examples of 
applicat ions of S U S Y Q M  to impor t an t  problems in theoretical chemistry. 
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